
Endogenous Avian Leukosis Virus in Combination with
Serotype 2 Marek’s Disease Virus Significantly Boosted the
Incidence of Lymphoid Leukosis-Like Bursal Lymphomas in
Susceptible Chickens

Jody K. Mays,a Alexis Black-Pyrkosz,a* Tamer Mansour,b,c* Brian C. Schutte,b Shuang Chang,a* Kunzhe Dong,d*
Henry D. Hunt,a† Aly M. Fadly,a† Lei Zhang,a,e,f Huanmin Zhanga

aUnited States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
bDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
cDepartment of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
dORISE Fellow, USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
eU.S. Forest Service International Programs, Washington, DC, USA
fInstitute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China

ABSTRACT In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lym-
phoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identi-
fied in two commercial broiler breeder flocks in the absence of exogenous ALV in-
fection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and
AF229, were isolated from two different breeder farms. The role of these ALV-E field
isolates in development of and the potential joint impact in conjunction with a
Marek’s disease virus (MDV) vaccine (SB-1) were further characterized in chickens of
an experimental line and commercial broiler breeders. The experimental line
0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chick-
ens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, in-
cluding ALV-E. Spontaneous LL-like tumors occurred following infection with AF227,
AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with sero-
type 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced
the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-
like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in
combination with SB-1 in the RFS chickens under controlled conditions. RNA-
sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the
RFS line of birds identified hundreds of differentially expressed genes that are re-
portedly involved in key biological processes and pathways, including signaling and
signal transduction pathways. The data from this study suggested that both ALV-E
and MDV-2 play an important role in enhancement of the spontaneous LL-like tu-
mors in susceptible chickens. The underlying mechanism may be complex and in-
volved in many chicken genes and pathways, including signal transduction pathways
and immune system processes, in addition to reported viral genes.

IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly
and poorly understood disease of domestic chickens. The observed unique charac-
teristics of LL-like lymphomas are that the incidence of the disease is chicken line
dependent; pathologically, it appeared to mimic avian leukosis but is free of exoge-
nous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts
the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and
SB-1 escalates it to much higher levels. This study was designed to test the impact
of two new ALV-E isolates, recently derived from commercial broiler breeder flocks,
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in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in
both an experimental egg layer line of chickens and a commercial broiler breeder
line of chickens under a controlled condition. Data from this study provided an addi-
tional piece of experimental evidence on the potency of nonpathogenic ALV-E,
MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in
susceptible chickens. This study also generated the first piece of genomic evidence
that suggests host transcriptomic variation plays an important role in modulating
LL-like lymphoma formation.

KEYWORDS endogenous retrovirus, serotype 2 Marek’s disease virus, spontaneous
tumors, genetic resistance, differentially expressed genes, signaling pathways

Lymphoid leukosis (LL) is a B-cell lymphoma of chickens taking place during
4 months of age and older (1, 2). The tumors typically involve liver, spleen, and

bursa of Fabricius (3) and are usually composed of aggregates of lymphoblasts of B-cell
origin with subsequent production of monoclonal IgM (4).

Commonly, LL is induced by transmissible strains of retroviruses, known as avian
leukosis virus (ALV), in susceptible chickens. The specific strains of ALV are defined as
exogenous ALVs, since they are transmitted as infectious virus particles. Exogenous
ALVs propagate in most tissues and organs of the avian body but only persist in bursal
lymphocytes, the target cells of neoplastic transformation (5). Field strains of exoge-
nous ALVs do not harbor any oncogene but instead induce lymphoid leukosis by
activation of the cellular myc oncogene (5). Only defective exogenous ALVs harbor
oncogenes, such as v-myc, v-src, v-myb, etc., and have been shown to induce acute
tumors in susceptible hosts (5).

Spontaneous ALV-like bursal lymphomas, also termed LL-like lymphomas, have
been reported in chicken flocks in the absence of exogenous ALV (6, 7). These tumors
are of bursal cell origin and are grossly and microscopically similar to exogenous
ALV-induced LL but free of detectable ALV infection (7). Some genetic lines of chickens
are more susceptible to the development of spontaneous ALV-like tumors, such as line
0 (8, 9) and the transgenic line 0.ALV6 (10), two of the chicken lines maintained by the
USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory (ADOL).
The 0.ALV6 line, originally derived from line 0, carries a defective subgroup A avian
leukosis provirus in its germ line and has been shown to develop spontaneous LL-like
tumors similarly to line 0 (11).

There are seven subgroups, A, B, C, D, E, J, and K, of ALVs identified in chickens based
upon the viral envelope glycoproteins (12–16). Unlike the other subgroups of exoge-
nous ALVs, the subgroup E viruses are avian retrovirus-like elements that are transmit-
ted genetically in a Mendelian fashion and are termed endogenous viruses (3). The
domestic White Leghorn chicken genome carries at least 22 endogenous ALV proviral
loci (ev-1 through ev-22) (17–19). Many of the endogenous viruses are genetically
defective and incapable of giving rise to infectious virions (20), whereas others may be
expressed in an infectious form (21). In the infectious form, endogenous viruses are
transmitted similarly to exogenous viruses, although there are chickens or lines of
chickens that are genetically resistant to infection of endogenous viruses (3, 22, 23).
Rous-associated virus type 0 (RAV-0), a subgroup E endogenous virus, has little or no
oncogenic potential (24). However, RAV-60, a subgroup E recombinant of endogenous
and exogenous viruses, is highly oncogenic, and infection of RAV-60 can lead to LL (25,
26). Endogenous ALVs also influence the response of birds to infection by exogenous
ALV (9, 27–29).

Genetic resistance to avian leukosis occurs at two levels, cellular resistance to virus
infection and resistance to tumor formation (30–33). Inheritance of cellular resistance to
ALV infection is of a Mendelian type. Independent autosomal loci control the resistance
to infection of subgroups ALV-A, -B, -C, and -J and are designated tva (tumor virus A
subgroup), tvb, tvc, and tvj, respectively (22, 34–36). Receptors responsible for mediat-
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ing the cellular resistance and infection for ALV subgroups D and E are also coded by
the tvb locus of specific alleles (37).

The TVB receptor complex is coded by a series of three alleles (TVB*S1, TVB*S3, and
TVB*R) of tvb. The TVB*S1 allele is dominant and encodes the receptor that mediates
infection of ALV subgroups B, D, and E. The TVB*S3 allele is recessive to TVB*S1 but
dominant to TVB*R and encodes a receptor that only mediates ALV-B and ALV-D
infection, not ALV-E infection. The TVB*R allele encodes a defective (truncated) receptor
incapable of facilitating infection by any of the three subgroup ALVs. Resistance to
subgroup E ALV is more complex. In addition to the allelic forms of the tvb locus, it is
believed that resistance to ALV-E also involves another locus, reportedly known as i (38).
Subsequent studies suggested that the i locus is, in fact, a series of competent ALV-E
inserts, also known as ev loci, that express high levels of the envelope glycoproteins of
ALV-E, which, in turn, competently interfere with the binding processes between the
ALV-E receptors and the subgroup ALV-E (23, 26, 39). Therefore, the susceptibility of
both homozygous and heterozygous TVB*S1 chickens to subgroup ALV-E might be
compromised by the replication-competent ALV-E inserts carried in those chickens’
genome (23).

Vaccination with Marek’s disease virus serotype 2 (MDV-2) has been shown to
enhance the development of ALV and reticuloendotheliosis virus-induced bursal lym-
phomas (40–42) as well as spontaneous bursal lymphomas (11, 43). MDV-2 has been
shown to elevate ALV gene expression and ALV replication (44). Furthermore, bursal
cells coinfected with ALV and MDV-2 are more likely to be transformed (45).

In 2010, a commercial company observed the development of spontaneous LL-like
tumors in broiler breeder flocks raised on more than one farm. The tumors were
identified during postmortem examinations of hens between 35 and 45 weeks of age
with no significant impact on reproductive performance and overall flock mortality. The
incidence of birds with developed spontaneous tumors was sporadic and was found
during routine postmortem exams. Lesions consistent with LL-like tumor were found in
liver, spleen, kidney, and, less frequently, in other organs. Samples from various tissues
received from the commercial broiler breeder chickens tested negative for known
exogenous ALV of subgroups A, B, C, D, J, and K, as determined by virus isolation and
PCR assays. However, two ALV-E field strains were isolated from two broiler breeder
flocks raised on two different farms and were designated AF-227 and AF-229.

Since it was unclear if the two isolate-specific ALV-E field strains were responsible for
the incidences of spontaneous LL-like bursa lymphomas observed in the commercial
broiler breeder flocks, this study was designed to characterize the two field isolates by
infecting birds sampled from a fully susceptible line of chickens, the line 0.TVB*S1,
commonly known as the rapid feathering-susceptible (RFS) line, which lacks all endo-
genous ALV and is fully susceptible to all subgroups of ALV, including ALV-E (46). The
affected commercial lines were no longer available at the time of this study; thus, a
different line of commercial broiler chickens from the same commercial company was
used in the challenge trials of the two field isolates in the presence and absence of
vaccination with MDV-2. Complete and partial genome sequence analyses of the two
field strains of ALV isolators were conducted for categorization and characterization.
Total RNA samples were extracted from fresh LL-like bursa lymphoma tissues of the RFS
chickens inoculated with AF227 followed by SB-1 vaccination, normal bursa tissues, and
B cells isolated from normal spleen tissues of uninfected RFS chickens, which were
subsequently subjected to RNA-sequencing (RNA-Seq) analysis to explore potential
genomic variation that may reveal insights into the escalated incidences of spontane-
ous LL-like lymphomas.

RESULTS
The field isolates AF227 and AF229 are closely related to the ALV subgroup

ALV-E. Two avian virus field isolates have been derived from commercial broiler
breeder flocks. The genomes of the two field isolates, AF227 and AF229, along with the
genomes of the prototype ALV-E strains, RAV-0 and RAV-60, and the prototype ALV-A
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strain, RAV-1, were sequenced. The complete genomic sequences have been deposited
in GenBank. Accession numbers of MF817820 for AF227, MF817821 for AF229,
MF817822 for RAV-0, MF817823 for a partial RAV-60 sequence, and MF926337 for RAV-1
were assigned. Sequence analyses of the complete AF227 and AF229 genomes were
closely related to those of known endogenous ALV strains, which confirmed our
expectation that these two new field isolates were subgroup E ALV, or ALV-E. The
sequences of both AF227 and AF229 genomes were more than 99% homologous to the
RAV-0 genome sequence. In contrast, the AF227 and AF229 genomes were only 89%
homologous to the ALV-A (RAV-1) genome and 79% homologous to the ALV-J (HPRS-
103) genome (47) sequences. Further comparison of the gp85 deduced amino acid
sequences showed that AF227 and AF229 were 99% to 100% homologous to the
sequence of the ALV subgroup E viruses, 81 to 85% homologous to those of ALV
subgroup A to D viruses, and 42% homologous to that of ALV subgroup J viruses (Fig.
1). The amino acid sequences of the gp85 envelope protein of the endogenous viruses
varied little but obviously differed from that of the exogenous viruses, consistent with
the literature (48–52). Furthermore, there was only a 45% nucleotide sequence homol-
ogy to exogenous long terminal repeats (LTRs), whereas the AF227 and AF229 LTRs
showed 96% identity to those in ALV-E strain RAV-0. The endogenous ALV LTRs were
256 nucleotides long and were shorter than the exogenous RAV-1 LTRs, which were 347
nucleotides in length.

Pathogenicity of the ALV-E field isolates AF227 and AF229. The pathogenicity of
the ALV-E field isolate AF227 observed in the fully susceptible RFS line of chickens is
shown in Table 1. The RFS (C/0) chickens inoculated at 7 days of embryonation (DOE)
were viremia tolerant for ALV-E, as evidenced by virus isolation at 4 and 32 weeks of age
using RFS chicken embryo fibroblasts (CEFs). Cocultivation of buffy coat analysis
showed that only the birds inoculated with MDV-2 in this trial were positive for MDV.
No significant difference in the incidences of spontaneous LL-like lymphomas was
observed following the inoculation of the RFS embryos at embryonation with either
AF227 or serotype 2 vaccine (SB-1) alone on the day of hatch, which resulted in 14%
and 17% of LL-like lymphomas in the RFS birds, respectively. However, inoculation of
the RFS embryos at embryonation with both AF227 and SB-1 on the day of hatch
significantly enhanced the incidence of LL-like lymphomas (P � 0.05), which resulted in
42% LL-like lymphomas in the RFS birds (Table 1).

The commercial broiler breeder flocks were typed by single-nucleotide polymor-
phism as TVB*S1/*S1 homozygous (data not shown) and should be fully susceptible to
infection of ALV-E, provided that birds are free of ev gene expression, particularly ev3,
ev6, and ev21, by the birds. Only 0 to 5% of the chickens at risk developed LL-like
lymphoma following inoculation of SB-1 in combination with either AF229 or AF227. In
contrast, 33 to 43% of RFS chickens developed LL-like lymphoma following the same
challenges. All virus isolation results on the line RFS CEF were positive, except for those
of the SB-1 and the phosphate buffered saline (PBS) inoculum groups of the RFS birds
(Table 1). On the other hand, all virus isolation results on the line 0 CEF were negative
for both the commercial broilers and the RFS birds at 4 and 32 weeks of age, which
evidenced that there was exogenous ALV infection in neither the commercial boilers
nor the RFS birds (Table 2).

Genomic analysis of AF227 by next-generation sequencing. The entire nucleo-
tide sequence of AF227 was recovered and assembled from RNA sequencing (RNA-Seq)
data obtained from the LL-like bursal lymphomas of the AF227- and MDV-2-infected
RFS chickens. The recovered AF227 nucleotide sequence was identical to that of the
AF227 nucleotide sequence derived from cloned AF227 virus. In addition, the MDV-2
gene, R-LORF1, was detected with significantly high expression levels, while the SORF1
and SORF2 genes were expressed at a relatively low level in the LL-like lymphoma
tissues.

The malignant and nonmalignant bursa groups were more comparable on
overall expression levels, in contrast to the splenic B-cell group. Next-generation
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FIG 1 Comparison of gp85 amino acid sequences of avian leukosis virus (ALV) subgroups E (AF227, AF229, RAV0, and RAV60; accession numbers MF817820,
MF817821, MF817822, and MF817823, respectively), A (RAV1, accession number MF926337), B (RAV2, accession number M14902.1), C (RAV49, accession number
J02342.1), D (RAV50, accession number D10652.1), and J (HC-1, accession number AF247391.1). One-letter amino acid codes are listed. Amino acid residues
identical to the majority of codes of AF227 are indicated by dots, dashes indicate amino acid residues missing due to deletions, and one-letter codes represent
the differences between AF227 and a subgroup of ALV.
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sequencing (NGS) read files of the individual RNA samples for the LL-like lymphomas,
the control groups of normal bursal tissues, and splenic B cells were deposited in the
NCBI SRA database under assigned project accession number PRJNA543277 (https://
www.ncbi.nlm.nih.gov/sra/PRJNA543277). The read data postnormalization are shown
in Fig. 2, illustrating the read distributions and variability among the samples. No
obvious difference was observable between the lymphoma group (Malig-0 to Malig-5)
and either of the control groups (Spleen-0 to Spleen-2 and Bursa-0 to Bursa-2) in
distribution, variability, and median values. However, Ward hierarchical clustering
analysis was further conducted using Euclidean distance to generate a distance matrix.
New clustering analyses showed low biological variability among samples within each
of the three biological sample groups, but the splenic B cell group was clearly more
distant from the malignant and nonmalignant bursa groups (Fig. 3). Thus, the subse-
quent comparisons were made between the malignant and nonmalignant bursa tissue
groups only, except for the overall gene expression profiling of the LL-like lymphomas
and the two control groups of normal bursa tissues and splenic B cells.

Gene expression profile of the LL-like lymphoma samples. A total of 10,539
genes/transcripts were identified with a minimum pass filter read count of 10 or more
in at least four of the twelve sequenced samples simultaneously. Of those, 521 and 260
expressed genes were exclusively observed in the LL-like lymphoma (tumor) samples
and the normal control samples (both normal bursa tissues and splenic B cells),
respectively (Fig. 4).

Identification of differentially expressed genes between the LL-like lymphoma
tissues and the normal control of nonmalignant bursa tissues. The differential
expression analysis was conducted between the malignant (LL-like lymphomas) and
the nonmalignant bursa groups due to the relatively close compatibility between the
LL-like lymphomas and this nonmalignant bursa control group (Fig. 3). A total of 923
genes/transcripts was identified differentially expressed between the LL-like lympho-
mas and normal bursa control group (0.5 � log2 fold change � �0.5 and P � 0.001).

TABLE 1 Incidences of LL-like lymphomas observed in RFS chickens inoculated with ALV-E AF227, MDV-2 vaccine (SB-1), or both

Inoculum
No. of chickens
at risk

Virus isolation [no. of chickens
positive/no. of chickens at risk (%)]
at wka:

No. of chickens with tumors/
no. of chickens at riskb (%)4 32

PBS 24 0/10 (0) 0/10 (0) 2/24 (8)a

SB-1 24 0/10 (0) 0/10 (0) 4/24 (17)a

AF227 36 9/10 (90) 9/9 (100) 5/36 (14)a

AF227 � SB-1 36 10/10 (100) 10/10 (100) 15/36 (42)b

aPlasma samples were tested for endogenous ALV on CEFs of the ADOL line RFS (C/E).
bThe inoculum groups not sharing a lowercase superscript letter differed in tumor incidences with statistical significance based upon chi-square analysis (P � 0.05).

TABLE 2 Incidences of LL-like lymphomas observed in commercial broiler breeders and RFS chickens inoculated with SB-1 MDV-2
vaccine, ALV-E isolate AF229, or a combination of SB-1 and AF227 or AF229

Inoculum
Chicken
line

Virus isolation [no. of chickens positive/no. of chickens at
risk (%)] at wka:

No. of chickens with LL-like lymphoma/
no. of chickens at riskb (%)

4 52

C/E C/0 C/E C/0

PBS Broiler 0/32 (0) 32/32 (100) 0/29 (0) 29/29 (100) 0/29 (0)a

AF229 Broiler 0/33 (0) 33/33 (100) 0/31 (0) 31/31 (100) 0/33 (0)a

SB-1 Broiler 0/35 (0) 35/35 (100) 0/31 (0) 31/31 (100) 0/35 (0)a

AF229 � SB-1 Broiler 0/35 (0) 35/35 (100) 0/30 (0) 30/30 (100) 0/34 (0)a

AF227 � SB-1 Broiler 0/27 (0) 27/27 (100) 0/14 (0) 14/14 (100) 1/19 (5)a

PBS RFS 0/43 (0) 0/43 (0) 0/33 (0) 0/33 (0) 2/57 (3.5)a

AF229 � SB-1 RFS 0/33 (0) 33/33 (100) 0/19 (0) 19/19 (100) 11/33 (33)b

AF227 � SB-1 RFS 0/35 (0) 35/35 (100) 0/18 (0) 18/18 (100) 15/35 (43)b

aPlasma samples were tested for exogenous and endogenous ALVs on CEFs of ADOL lines 0 (C/E) and RFS (C/0).
bTumor incidences between inoculum groups sharing no common lowercase superscript letter differed significantly based upon chi-square analysis (P � 0.05).
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Of those, 196 genes were significantly more highly expressed and 727 genes were
significantly less expressed in the LL-like lymphomas tissues than those in the control
group of normal bursa tissues (see Table S1 in the supplemental material). A subset of
the top genes significantly upregulated and downregulated was further closely exam-
ined and classified into categories of known functions, which include oncogenes, tumor
suppressor genes, virus-associated genes, and immune response and cytokine genes.
The oncogene category includes upregulated T-cell lymphoma invasion and metastasis
2 (TIAM2) and B-cell CLL/lymphoma 9-like (BCL9L) genes along with 11 other up- or
downregulated oncogenes; the key tumor suppressor genes include downregulated

FIG 2 Box-and-whisker plots of gene expression profiles for each of the malignant samples (Malig-0 to
Malig-5) and nonmalignant samples, including the control groups of bursa tissues (Bursa-0 to Bursa-2)
and splenic B cells (Spleen-0 to Spleen-2), illustrating the RNA-Seq read distribution and variability of the
RNA-Seq samples. FPKM, fragments per kilobase per million.

FIG 3 Ward hierarchical clustering by Euclidean distance between the malignant bursa samples (Malig-0
to Malig-5) and the control groups of nonmalignant bursa and splenic B-cell samples (Bursa-0 to Bursa-2
and Spleen-0 to Spleen-2). The result graphically showed that the malignant group was relatively more
comparable to the nonmalignant bursa group, in contrast to the splenic B-cell group.
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tumor protein p63 (TP63) and suppression of tumorigenicity 14 (ST14) genes, along with
4 other genes. The key immune response cytokine genes include upregulated
interleukin-18 (IL-18), class I histocompatibility antigen, F10 alpha chain-like (HA1F), and
CD247 molecule (CD247), along with 15 other up- or downregulated genes (Table 3).

GO term and pathway enrichment by lists of differentially expressed genes
between the LL-like tumors and the normal bursal controls. The upregulated genes
were enriched in more than 100 Gene Ontology (GO) terms and a few pathways, while
the downregulated genes were enriched in more than 1,000 GO terms and more than
100 pathways (Fig. 5). Both lists of differentially expressed genes were enriched across
key molecular function, biological process, and cellular component terms (a complete
list of GO terms and pathway enrichment outputs for the upregulated and downregu-
lated genes is given in Table S2). Some of the identified most differentially expressed
genes of known functions are involved in key GO terms and pathways, which include
signal transduction (top oncogene category), apoptotic signaling pathway and regu-
lation of apoptotic signaling pathway (tumor suppressor category), regulation of RNA
biosynthetic process and regulation of nucleic acid-templated transcription (viral asso-
ciated genes), and Toll-like receptor signaling pathways (immune response and cyto-
kine gene category). A complete list of GO terms and pathways that are involved with
some of the most differentially expressed genes is detailed in Table 4.

DISCUSSION

Spontaneous LL-like lymphomas were reported 4 decades ago, having been ob-
served in experimental lines of chickens in the absence of exogenous ALV but with the
presence of endogenous ALV (6, 7). Subsequent studies reported that Marek’s disease
virus serotype 2, commonly used as one of the bivalent or trivalent Marek’s disease
vaccines, augments the incidence of lymphoid leukosis induced by exogenous ALV (41)
and the incidence of LL-like lymphomas in chickens free of both exogenous and
endogenous ALVs (11, 43).

The putative mechanism had been postulated by researchers encompassing multi-
ple possibilities, whereby MDV-2 could exert influence on bursal cells, which might
subsequently modulate the transformation process of B cells alone or in combination
with the endogenous, exogenous, or both ALVs. In fact, integration of exogenous
herpesviruses into the host genome activates expression of endogenous retroviral
genes within the host, as evidenced by Epstein-Barr virus (EBV) (53–55) and Marek’s
disease virus (56). Reportedly, MDV-2 only infects and persists in ALV-transformed B
cells (45). This supports a model of intracellular cooperation between MDV and ALV
resulting in the augmentation of lymphoma development (45). Typically, ALV-E alone
demonstrates little to no oncogenicity (24), possibly due to weak promoter activity of
the LTR. Coinfection of MDV-2 with ALV results in activation of the retrovirus long
terminal repeat by MDV-2. Studies have shown that MDV-2 activates the Rous sarcoma
virus LTR (RSV-LTR) promoter 2- to 5-fold more efficiently than serotype 1 MDV (MDV-1)
or serotype 3 MDV (MDV-3) (57). Similarly, MDV activates the ALV-LTR promoter, leading
to increased expression of ALV RNA, proteins, and infectious viruses in cultured cells
(44).

The ALV LTR serves as either a promoter or activator of c-myc (58, 59), c-erbB (60),
and c-myb when infection occurs at embryonation (61). The Myc transcription factor

FIG 4 Venn diagram graphically illustrating profile statistics of genes identified by RNA-Seq between the
spontaneous lymphoid lymphoma samples and the combined control samples (bursa and splenic B
cells). Although most of the genes were expressed in both groups, hundreds of genes were exclusively
expressed either in the tumor (lymphoid leukosis-like lymphomas) or the normal control samples.
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TABLE 3 Selected differentially expressed genes with high statistical significance and known functions between the LL-like lymphomas
and the control group of normal bursa tissues

Ensemble IDa Gene name Gene description

Log2 fold
change
(M/N)b P value

Fold change
direction

Oncogenes
16391 CNKSR2 Connector enhancer kinase suppressor of Ras 2 2.7 1.67E�06 Up
36005 TIAM2 T-cell lymphoma invasion and metastasis 2 2.5 3.54E�20 Up
27789 RAB37 Ras-related protein Rab-27-like 1.5 1.23E�11 Up
16817 RASA3 RAS p21 protein activator 3 1.3 5.66E�13 Up
14277 RHOH Ras homolog family member H 1.3 2.37E�07 Up
07685 BCL9L B-cell CLL/lymphoma 9-like 1.2 6.48E�05 Up
14913 ROS1 ROS proto-oncogene 1, receptor tyrosine kinase �8.4 4.19E�69 Down
11664 RASSF6 Ras association domain family member 6 �7.9 4.76E�53 Down
06076 RASGEF1C RasGEF domain family, member 1C �3.6 2.88E�18 Down
36883 MET Proto-oncogene, receptor tyrosine kinase �3.5 2.12E�26 Down
03129 RAB11FIP1 RAB11 family interacting protein 1 (class 1) �3.5 6.97E�15 Down
00769 RAB7B RAB7B, member RAS oncogene family �2.5 9.11E�14 Down
03503 MYBL2 MYB proto-oncogene like 2 �1.0 1.92E�05 Down

Tumor suppressor genes
11715 HSPA2 Heat shock 70-kDa protein 2 3.6 5.09E�15 Up
17071 HSPH1 Heat shock 105-kDa/110-kDa protein 1 1.2 4.57E�05 Up
32832 DNAJC16 DNAJ heat shock protein family member C16 1.0 4.77E�06 Up
07324 TP63 Tumor protein p63 �2.2 2.02E�06 Down
01331 ST14 Suppression of tumorigenicity 14 �1.7 3.83E�09 Down
03855 SRC v-src avian sarcoma (Schmidt-Ruppin A-2) viral

oncogene homolog
�1.6 6.14E�09 Down

Virus-associated genes
30025 FABP4 Fatty acid binding protein 4 3.4 4.79E�08 Up
14860 YES1 y-Yes-1 Yamaguchi sarcoma viral oncogene

homolog 1
�2.8 1.81E�31 Down

16059 ETS2 v-ets avian erythroblastosis virus E26 oncogene
homolog 2

�2.5 4.21E�22 Down

31529 ERBB2 v-erb-b2 avian erythroblastic leukemia viral
oncogene homolog 2

�2.1 8.95E�07 Down

38154 YAP1 Yes-associated protein 1 �1.3 2.51E�05 Down
03670 MAFB v-maf avian musculoaponeurotic fibrosarcoma

oncogene homolog B
�1.2 9.92E�09 Down

Immune response genes
and cytokines

14585 ENSGALG14585 Chemokine 2.8 3.20E�17 Up
30270 CD1C CD1c molecule 2.7 1.02E�15 Up
12545 CYTIP Cytohesin 1 interacting protein 2.4 5.55E�11 Up
12292 BANK1 B-cell scaffold protein with ankyrin repeats 1 2.0 9.65E�08 Up
07418 CD3D CD3d molecule, delta 1.9 5.22E�05 Up
07874 IL18 Interleukin-18 1.9 6.25E�06 Up
26466 HA1F Class I histocompatibility antigen, F10 alpha

chain-like
1.6 5.90E�07 Up

15441 CD247 CD247 molecule 1.6 2.27E�05 Up
19322 TNFRSF13C Tumor necrosis factor receptor superfamily,

member 13C
1.4 9.25E�05 Up

28496 NFKBID NF-kappa-B-inhibitor delta-like 1.2 1.60E�06 Up
09963 LYZ Lysozyme (renal amyloidosis) �7.6 2.60E�62 Down
08552 MAL Mal, T-cell differentiation protein �7.2 8.52E�53 Down
15348 ALCAM Activated leukocyte cell adhesion molecule �5.5 3.02E�62 Down
11668 IL8L1 Interleukin 8-like 1 �4.0 6.37E�18 Down
08554 IL17REL Interleukin 17 receptor E-like �4.0 3.89E�12 Down
37851 KK34 Interleukin-like �3.6 4.81E�09 Down
26663 CX3CL1 Chemokine (C-X3-C motif) ligand 1 �3.3 1.09E�12 Down
06346 CXCL14 C-X-C motif chemokine ligand 14 �3.2 2.59E�07 Down
38000 CX3CR1 Chemokine (C-X3-C motif) receptor 1 �3.2 3.96E�12 Down
01405 IRF6 Interferon regulatory factor 6 �3.1 3.98E�08 Down
11418 CCR6 C-C motif chemokine receptor 6 �3.0 5.32E�07 Down
21627 IFI27L2 Interferon, alpha-inducible protein 27-like 2 �3.0 5.71E�15 Down

(Continued on next page)
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induces cell growth and proliferation by influencing the expression of cell cycle
regulatory genes (62). ALV induces bursa lymphomas in lymphoma-susceptible strains
of chickens after proviral integration within the c-myc gene and subsequent expansion
of Myc-overexpressing lymphocytes within transformed follicles (58, 63). Transformed
follicles grow much more rapidly than normal follicles following ALV infection. This is
not solely due to overexpression of Myc; however, susceptible transformed follicles
grow much larger than normal ones because following ALV infection, B-cell differen-
tiation and bursal emigration are blocked at an embryonic stage (64). It is speculated
that endogenous ALV LTR genes integrate near c-myc and activate c-myc expression
similarly to exogenous ALV LTR. The c-myc transcription levels, however, may be lower
following endogenous ALV-LTR integration than exogenous ALV-LTR (65).

This report, in part, characterized the two endogenous ALV field isolates, designated
AF227 and AF229, which were isolated from commercial broiler breeder flocks after the
spontaneous LL-like lymphomas were observed on the farm. To verify if the new ALV-E
isolates alone or in combination with the MDV-2 vaccine are responsible, to an extent,
for the incidence of spontaneous LL-like lymphomas, birds from different commercial
lines, other than the flocks from which AF227 and AF229 were isolated (those flocks of
birds were no longer available at the time of the challenge trials of this study), and a
fully susceptible chicken line, developed and maintained on the ADOL farm and known
as the RFS line and free of any endogenous ev genes (46), were infected with each of
the ALV-E field isolates or inoculated with the MDV-2 vaccine or a combination of the
ALV-E isolate and the MDV-2 vaccine. There was no incidence of spontaneous LL-like
lymphomas observed in the commercial broiler breeder chickens following infection
with either AF229 or AF229 with MDV-2 vaccination in this study (Table 2). No
significant difference in LL-like lymphoma incidence was detected between the AF227
isolate group and the MDV-2 vaccination group (P � 0.05) in the RFS birds, as shown in
Table 1. However, each ALV-E isolate in combination with MDV-2 vaccine significantly
accelerated the incidences of spontaneous LL-like lymphomas in the RFS birds, in
contrast to the sole AF227 isolate infection and the sole MDV-2 vaccination groups
(Tables 1 and 2; P � 0.05).

TABLE 3 (Continued)

Ensemble IDa Gene name Gene description

Log2 fold
change
(M/N)b P value

Fold change
direction

09392 TLR5 Toll-like receptor 5 �2.8 4.70E�19 Down
07174 TNFSF15 Tumor necrosis factor superfamily member 15 �2.8 3.31E�09 Down
29940 IL-1beta Interleukin-1� �2.6 1.03E�08 Down
28466 IL34 Interleukin-34 �2.6 1.77E�08 Down
25599 CD24 CD24 molecule �2.6 7.91E�05 Down
43044 IL1R1 Interleukin-1 receptor, type 1 �2.6 9.73E�19 Down
16785 IL1RL1 Interleukin-1 receptor-like 1 �2.4 1.70E�07 Down
26098 IL8L2 Interleukin-8-like 2 �2.4 1.89E�05 Down
05305 ACKR2 Atypical chemokine receptor 2 �2.3 3.30E�12 Down
03733 LIFR Leukemia inhibitory factor receptor alpha �2.2 6.10E�06 Down
11295 SOCS2 Suppressor of cytokine signaling 2 �2.1 6.21E�06 Down
37413 IL7 Interleukin-7 �1.9 1.40E�05 Down
00884 CXXC5 CXXC finger protein 5 �1.9 1.22E�08 Down
17119 TNFSF19 Tumor necrosis factor receptor superfamily

member 19
�1.8 3.95E�06 Down

09612 TGFB2 Transforming growth factor, beta 2 �1.7 5.49E�10 Down
03136 IKZF2 IKAROS family zinc finger 2 �1.7 9.74E�05 Down
41621 LY6E Lymphocyte antigen 6 complex, locus E �1.6 3.39E�09 Down
09179 TNSF10 Tumor necrosis factor superfamily member 10 �1.5 3.23E�05 Down
11446 TNFAIP2 TNF-�-induced protein 2 �1.5 1.50E�05 Down
06407 TNFRSF23 Death domain-containing tumor necrosis factor

receptor superfamily member 23
�1.5 3.42E�05 Down

30005 IGSF1 Immunoglobulin superfamily, member 1 �1.2 5.69E�06 Down
aGene identifiers (ID) are truncated forms of their designations in the ENSEMBL database, e.g., 16391 is ENSGALG0000016391, 36005 is ENSGALG0000036005, etc.
bM refers to malignant group, that is, the LL-like lymphoma group; N stands for nonmalignant group, that is, the control group of normal bursa tissues.
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Genetic resistance to ALV is multifactorial and depends upon resistance to infection
and resistance to tumor development (32, 33, 39). The commercial broiler breeder
chickens appear to be resistant to tumor development since they were susceptible to
ALV-E infection, as evidenced by the presence of the ALV-E receptor TVB*S1/*S1, and
they were viremia tolerant following infection at embryonation. Parghi et al. (66)
identified that in ALV-resistant chickens, ALV LTR-enhanced c-myc gene expression is
reduced, resulting in normal B-cell differentiation, normal follicle development, and
posthatch bursal emigration in resistant transformed bursa follicles. We did not analyze
bursa tissue from the commercial broiler breeder chickens to determine the level of
gene transcription in transformed bursa follicles. It would, however, be interesting to
note the levels of gene expression in transformed bursa follicles between susceptible
and resistant chickens.

We did assess the whole-genome transcriptomic levels between the LL-like bursa
lymphomas collected from the RFS birds after SB-1 and AF227 inoculation and the
normal control group of bursa tissue samples of the same line of birds. Next-generation
sequence analysis resulted in hundreds of differentially expressed genes/transcripts for
the first time between LL-like lymphoma samples and the normal bursa tissue samples,
which include genes of known function in the categories of oncogenes, tumor sup-
pressor genes, virus-associated genes, and immune response and cytokine genes. A
minimum of six oncogenes were upregulated and seven oncogenes downregulated in
the spontaneous LL-like lymphoma samples, in contrast to the normal control group of
nonmalignant bursa tissues and in addition to up- and downregulated genes with
categorically known functions of tumor suppression, viral functions, immune responses,
and activities of cytokines (Table 3). Further bioinformatics analyses showed that some
of those differentiated genes reportedly are involved in key GO terms and pathways,

FIG 5 Manhattan plot illustrating the differentially expressed gene-enriched GO terms (MF, molecular function; BP, biological process; and CC, cellular
component) and KEGG pathways across reactome pathways (REAC), WiKi-Pathways (WP), transcription factor (TF), microRNA target base (MIRNA), and human
phenotype ontology (HP) term categories. (A) Upregulated genes enriched in GO terms and pathways. (B) Downregulated genes enriched in GO terms and
pathways. �log10(Padj), enrichment score calculated using the formula �log10(false discovery rate).
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including signaling pathways, signal transduction, immune response, and KEGG path-
ways.

The upregulated known oncogenes and downregulated tumor suppressor genes
represented only a small subset of the 923 genes significantly expressed between the
LL-like lymphoma samples and the nonmalignant normal bursa tissues. Sequence
analyses of higher depth than those of this study and additional LL-like lymphoma
samples for such analyses are warranted and necessary to advance the understanding
of the mechanism at genomic levels on what constitutes the LL-like lymphoma
susceptibility and how a nonpathogenic subgroup of ALV in conjunction with little or
no pathogenic MDV-2 jointly boost the incidence of LL-like lymphomas in susceptible
chickens.

In summary, we have isolated two endogenous ALV field isolates capable of
inducing spontaneous LL-like lymphomas in susceptible chickens in conjunction with
MDV-2. We have characterized the two ALV field isolates at the genomic level, desig-
nated the isolates AF227 and AF229. The genomic sequence analyses of the AF227 and
AF229 isolates showed these two ALV isolates belong to subgroup E ALV. RNA
sequencing analyses of the spontaneous LL-like lymphomas induced by AF227 and
SB-1 in an experimental line of birds under controlled conditions and normal bursa
tissues of the same genetic line of birds resulted in a total of 923 differentially
expressed genes between the two groups. Some of the differentially expressed genes
with known functions of oncogenicity and tumor suppression, association with viral
functions, immune responses, and cytokine activities are involved with multiple key
pathways, including signaling, signal transduction, and KEGG pathways.

MATERIALS AND METHODS
Virus isolation. Plasma, spleen, and liver samples of eight breeders of a broiler breeder flock were

received from a commercial farm at which spontaneous lymphoid leukosis-like bursal lymphoma
incidences were observed. The samples were tested for virus growth using chicken embryo fibroblasts
(CEF) from ADOL-specific pathogen-free lines of chickens, RFS (C/0) and line 0 (C/E), and followed by PCR
using viral subgroup-specific primers. Aliquots of plasma, spleen, and liver homogenates were seeded
onto secondary CEF from line 0 (9) and line RFS (46) for virus isolation. CEFs were maintained in Leibovitz
L-15 medium plus McCoy 5A medium (1:1), supplemented with 1% bovine serum and antibiotics for 10
to 14 days before harvest of cell-free viruses. Two isolates, designated AF227 and AF229, were obtained
and were further characterized molecularly and biologically. Total viral DNA from CEF-infected cells was
extracted using standard proteinase K, phenol-chloroform extraction procedures. The viral DNA was
analyzed by PCR using ALV subgroup-specific primers as described by Silva et al. (67) to determine which
subgroup or subgroups of ALV were present in the viral DNA sample.

Viral DNA sequence analysis. The proviral DNA samples from the infected CEFs were sequenced at
the Research Technology Support Facility, Michigan State University (East Lansing, MI). Contigs were
constructed using Sequencer (Gene Codes Corp., Ann Arbor, MI). DNA sequences were aligned using the
Clustal W model in the MegAlign program of Lasergene (version 11; DNASTAR, Inc., Madison, WI).
Phylogenetic relatedness was also calculated using the MegAlign program. The sequence analyses
included the isolates AF227 and AF229, along with the prototype ALV-E virus RAV-0 (24), partial sequence
of the recombinant ALV-E strain RAV-60 (68), and ALV subgroup A strain RAV-1 (69).

Lines of chickens used in the challenge trials. Chickens from the line RFS were used in this study,
since they are free of endogenous viruses, TVB*S1/*S1 homozygous, and thus are fully susceptible to
infection of all subgroups of ALV viruses, including the ALV-E subgroup (46). Fertile eggs were also
obtained from a commercial broiler breeder, which were incubated on the ADOL farm, and the chickens
hatched from the eggs were included in one of the experiments. We note that the fertile eggs obtained
this time were from the same commercial broiler breeder from which the specimens were received
earlier for the virus isolations of AF227 and AF229, but the fertile eggs received this time for the
experiment were from a different broiler flock housed on a different farm rather than the original flock
and farm from which the spontaneous LL-like tumor incidences were observed or AF227 and AF229 were
isolated. Two challenge trials were conducted. One was with chickens only from the ADOL line RFS and
the other with chickens from both ADOL line RFS and the commercial broiler breeder eggs hatched on
the ADOL farm. All of the birds in each experiment from each line were housed in a biosafety level 2
facility on the ADOL farm. Feed and water were supplied ad libitum.

A challenge trial to test the pathogenicity of ALV isolate AF227 in RFS chickens. Sampled fertile
eggs from the ADOL line RFS chickens were divided into four groups. One group of the embryos, a
control group, was inoculated with 100 �l of sterile PBS, and two of the groups were inoculated with
100 �l of ALV-E isolate AF227 at 1,000 50% tissue culture infectious doses/0.1 ml per bird via yolk sac at
7 DOE. At 1 day of age, the other group of chickens that did not receive any treatment and one of the
groups that had received AF227 inoculation at 7 DOE was given 500 PFU each of the MDV-2 vaccine SB-1
intraperitoneally. Chickens of the different treatment groups were housed in separate isolators and
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monitored up to 50 weeks of age. At 2 weeks of age, blood samples were collected from a subset of
chickens from each group, and buffy coats were analyzed for the presence of MDV-2-specific plaques as
described by Aly et al. (40).

A challenge trial to test the pathogenicity of AF227 and AF229 ALV isolates in commercial
breeder broilers and RFS chickens. The received commercial broiler fertile eggs were divided into five
groups in incubation. One group received PBS (control), two groups received AF229, and one group
received AF227 at 7 DOE. At 1 day of age, the group of birds pretreated with AF227 and the group of
birds that did not receive any treatment at 7 DOE, along with one group of birds pretreated with AF229,
were vaccinated with MDV-2 as described above. Fertilized eggs from line RFS were divided into three
groups. One group was given PBS (control), and the other two groups were given AF227 or AF229 at 7
DOE. The latter two groups were inoculated with SB-1 vaccine at 1 day of age as described above. All
chickens were bled at 4 weeks of age, and all surviving chickens were bled at 52 weeks of age prior to
termination. The procedures for handling and sampling of the chickens were preapproved by the ADOL
Animal Care and Use Committee (ACUC). The experimental chickens were monitored daily throughout
the 52-week experiment period, and all moribund chickens were euthanized humanely by following
American Veterinary Medical Association-approved methods.

Virus and antibody assays. The plasma samples were assayed for infectious exogenous and
endogenous ALV as well as the presence of antibody by preestablished procedures described previously
by Fadly and Witter (70). The presence or absence of MDV-2 in individual chickens was determined by
cocultivation of 1 � 106 buffy coat cells from centrifuged and heparinized blood samples onto duck
embryo fibroblasts (DEF), as described previously by Aly et al. (40).

Pathology examinations. All chickens that died during experiments or were euthanized at the
end of the experiments were subjected to individual necropsy. Lymphomas were diagnosed on the
basis of visual and histological examinations of tissues with gross tumors or suspicious microtumors,
respectively (3).

TVB genotyping by pyrosequencing. TVB genotypes of all the commercial broilers included in this
experiment were determined by pyrosequencing analysis by following procedures described by Zhang
et al. (22). Briefly, short PCR amplicons were generated from the broiler DNA samples with a pair of
primers, of which one of the primers was biotinylated at the 5= end. The PCR products then were
subjected to binding, shaking, annealing, washing, and denaturation processes. The end products of the
PCR amplicons were biotin-labeled and single-stranded DNA, which were then analyzed on a PSQ 96MA
pyrosequencer system (Qiagen, Inc., MD) for TVB genotypes. There are six commonly observed TVB
genotypes in commercial birds, which are TVB*S1/*S1, TVB*S1/*S3, TVB*S1/*R, TVB*S3/*S3, TVB*S3/*R, and
TVB*R/*R.

Tissue samples, B-cell isolation, and total RNA extraction. LL-like bursal lymphoma tissues were
collected from six RFS chickens treated with AF227 at 7 DOE and SB-1 on the day of hatch during
postmortem examination between 32 and 43 weeks of age (see Table S3 in the supplemental material).
Fresh normal bursal tissues from three 3-week-old noninoculated RFS line chickens were also collected.
Splenic B cells from three noninfected and age-matched RFS line chickens were isolated using a
magnetically activated cell sorting (MACS) cell separation system by following the manufacturer’s
instructions (Miltenyi Biotech, San Diego, CA). Briefly, the spleen tissues were first individually homog-
enized. Separated cells were stained with a fluorescein isothiocyanate (FITC)-conjugated primary anti-
body. Subsequently, the cells were magnetically labeled with anti-FITC microbeads. The cell suspension
was loaded onto a MACS column, and labeled cells were separated via a MACS separator. Total RNA was
extracted from tissue homogenates and the B cells using an RNeasy kit as recommended by the
manufacturer (Qiagen, Valencia, CA). The last two groups of samples, the normal bursal tissues and the
splenic B cells, served as the normal control groups of the LL-like bursal lymphoma samples in RNA-Seq
analysis.

Next-generation sequencing analysis. Total RNAs of the bursal lymphoma tissue, the normal bursal
tissues, and the splenic B cells were subjected to NGS analysis. NGS libraries were built using Illumina’s
TruSeq stranded mRNA library preparation kit by following the manufacturer’s instructions (Illumina, San
Diego, CA). Sequencing was performed on an Illumina HiSeq 2500 machine running in high-output mode
in a 2� 100-bp paired-end format using an Illumina TruSeq PE cluster kit (v3) and TruSeq SBS kit (v3).
The raw reads were quality assessed using FastQC, version 0.11.2 (http://www.bioinformatics.babraham
.ac.uk/), and adaptors were removed using Trimmomatic, version 0.30 (71). Low-quality bases were
trimmed using custom Python scripts to remove the first 13 nucleotides, and Sickle v1.33 (72) was used,
under a sliding window with an average quality score of 30, for removal of reads with N nucleotides and
reads that were under the 50-bp minimum read length threshold. The good-quality reads were mapped
to a combined reference sequence containing the chicken (galGal4) genome (73), SB-1 (GenBank
accession no. HQ840738.1) (74), and Rous sarcoma virus (NCBI reference sequence NC_001407.1) (75)
with Ensembl annotation (76) using TopHat2, version 2.0.8b (77), and Bowtie2, version 2.1.0 (78). This
resulted in approximately 33,806,146 minimum reads, 55,558,773 median reads, and 118,577,764 max-
imum reads in the alignments of the 12 sample libraries. The alignments were subjected to subsequent
analysis with CuffDiff2, version 2.2.0 (79), to identify genes that were differentially expressed between the
LL-like bursal lymphoma group and the control group. Ensembl gene identifiers for the differentially
expressed genes were used to form the upregulated and downregulated gene lists, which were used as
the input for Gene Ontology and pathway enrichment analyses using both custom R scripts and the
g:Profiler online resources (80).

Reconstruction of AF227 genome from the LL-like lymphoma RNA-Seq data. The RNA-Seq reads
of the LL-like lymphoma samples were aligned to the NCBI viral genomes database (81) using BLAST�,
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version 2.2.28 (82). All reads that matched to an annotated avian virus were retained, pooled, and then
assembled into a reconstructed version of the AF227 genome with Trinity, version 20140413p1 (83). All
next-generation sequence data processes were performed at the Michigan State University High-
Performance Computing Facility (East Lansing, MI).

Data availability. The complete genomic sequences have been deposited in GenBank under
accession numbers MF817820 for AF227, MF817821 for AF229, MF817822 for RAV-0, MF817823 for a
partial RAV-60 sequence, and MF926337 for RAV-1.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JVI

.00861-19.
SUPPLEMENTAL FILE 1, XLSX file, 1.1 MB.
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